首页 >> 科研成果 >> 论文
 
论文题目 One-pot synthesis of SiO2-coated Gd-2(WO4)(3):Yb3+/Ho3+ nanoparticles for simultaneous multi-imaging, temperature sensing and tumor inhibition
作  者 ; Guofeng Liu, Yeqing Chen, Mochen Jia, Zhen Sun, Binbin Ding, Shuai Shao, Fan Jiang, Zuoling Fu, Ping'an Ma and Jun Lin
发表年度 JUL 28 2019
刊物名称 DALTON TRANSACTIONS
卷、期、页码 48; 28; 10537-10546
影响因子
论文摘要
 Rare earth ion-doped fluoride upconversion nanoparticles (UCNPs), emerging as a novel class of probes and drug carriers, exhibit superior promise for bio-applications in diagnostics and treatment on account of their strong luminescence, fine biocompatibility, and high drug loading. However, the fine control and manipulation of particle size and the distribution of rare earth ion-doped oxides has remained an insurmountable challenge to date. In this work, we construct and synthesize silica-coated Gd-2(WO4)(3):Yb3+/Ho3+ nanoparticles by one-pot co-precipitation, with uniform distribution (similar to 130 nm) and enhanced yellow fluorescence. Particularly, the nanoparticles not only possess outstanding temperature sensing performance at biological temperatures in water by utilizing the fluorescence intensity ratio (FIR) method, but also allow a further serviceable contrast effect in vitro and in vivo based on the prominent T-1-weighted magnetic resonance (MR) signal of Gd3+. Compared with cisplatin and platinum(iv) (DSP), the Gd-2(WO4)(3)@SiO2 nanoparticles functionalized with DSP (Gd-2(WO4)(3)@SiO2-Pt-PEG) exert higher lethality against CT26 cells and significantly inhibit the growth of tumors at the same concentration of Pt. This effect occurs through the greater level of cell endocytosis. The lethality value of the latter is 10 times higher than the former after the same length of time according to inductively coupled plasma-mass spectrometry (ICP-MS) results. In short, the monodisperse and strongly fluorescent Gd-2(WO4)(3)@SiO2-Pt-PEG nanoparticles are endowed with dual-mode imaging, temperature sensing and anticancer functions, which provide a significant guide for synthesis and bio-application of lanthanide ion-doped oxides.
全文链接 https://pubs.rsc.org/en/content/articlelanding/2019/DT/C9DT01841G#!divAbstract
附件地址