论文
  1. Ashebr, T. G., La Droitte, L., Li, X.-L., Zhao, C., Wu, J., Zhou, Q., Cador, O., Le Guennic, B., & Tang, J. (2022). Edaravone-Based Mononuclear Dysprosium(III) Single-Molecule Magnets. Crystal Growth & Design, 22(8), 5063–5070. https://doi.org/10.1021/acs.cgd.2c00574
  2. Ashebr, T. G., Li, X.-L., Zhao, C., Yang, Q., & Tang, J. (2022). Bis-pyrazolone-based dysprosium(iii) complexes: zero-field single-molecule magnet behavior in the [2 × 2] grid DyIII4 cluster [10.1039/D2CE01067D]. CrystEngComm, 24(38), 6688–6695. https://doi.org/10.1039/D2CE01067D
  3. Cao, R., Chen, K., Cui, Y., Liu, J., Liu, W., Huang, G., & Zhang, X. (2023). Gel electrolyte via in situ polymerization to promote durable lithium-air batteries. Chinese Chemical Letters, 34(12), 108711. https://doi.org/https://doi.org/10.1016/j.cclet.2023.108711
  4. Cao, R., Chen, K., Liu, J., Huang, G., Liu, W., & Zhang, X. (2024). Li–air batteries: air stability of lithium metal anodes. Science China Chemistry, 67(1), 122–136. https://doi.org/10.1007/s11426-023-1581-2
  5. Chen, H., Yang, D., Huang, G., & Zhang, X. (2024). Progress on Liquid Organic Electrolytes of Li-O2 Batteries. Acta Physico-Chimica Sinica, 40(7), 2305059. https://doi.org/https://doi.org/10.3866/PKU.WHXB202305059
  6. Chen, J., Wang, H., Xie, Q., Fang, Y., Sun, L., Wang, X., Song, S., & Zhang, H. (2025). Enhanced photothermal catalytic CO2 reduction by CeO2-based multicomponent catalysts [10.1039/D4TC04203D]. Journal of Materials Chemistry C, 13(4), 1592–1611. https://doi.org/10.1039/D4TC04203D
  7. Chen, K., Du, J.-Y., Wang, J., Yang, D.-Y., Chu, J.-W., Chen, H., Zhang, H.-R., Huang, G., & Zhang, X.-B. (2023). Realizing Stable Carbonate Electrolytes in Li–O2/CO2 Batteries†. Chinese Journal of Chemistry, 41(3), 314–321. https://doi.org/https://doi.org/10.1002/cjoc.202200498
  8. Chen, K., Yang, D.-Y., Wang, J., Huang, G., & Zhang, X.-B. (2023). Overcharge to Remove Cathode Passivation Layer for Reviving Failed Li-O2 Batteries. CCS Chemistry, 5(3), 641–653. https://doi.org/doi:10.31635/ccschem.022.202201876
  9. Chu, J., Li, Z., Wang, J., Huang, G., & Zhang, X. (2024). Optimization strategies for key interfaces of LLZO-based solid-state lithium metal batteries [10.1039/D3QM01111A]. Materials Chemistry Frontiers, 8(9), 2109–2134. https://doi.org/10.1039/D3QM01111A
  10. Ding, N., Liu, W., Chen, B., Wang, S., Zhao, S., Wang, Q., Wang, C., Yin, D., Wang, L., & Cheng, Y. (2023). Interface and body engineering via aluminum hydride enabling Ti-V-Cr-Mn alloy with enhanced hydrogen storage performance. Chemical Engineering Journal, 470, 144143. https://doi.org/https://doi.org/10.1016/j.cej.2023.144143
  11. Fan, J., Wu, Y., Qiu, X., Tian, Z., Meng, J., Wan, P., Li, C., Dong, B., & Qiu, F. (2022). Remarkably enhancing mechanical and degradation performance of cast MgZn1.2 alloys via small amount addition of zirconium combined with hot extrusion for orthopedic applications. Journal of Materials Research and Technology, 19, 1111–1119. https://doi.org/https://doi.org/10.1016/j.jmrt.2022.05.086
  12. Fang, B., Wang, H., Zhao, M., Xu, J., Wang, X., Song, S., & Zhang, H. (2022). Highly efficient electrochemical N2 reduction over strongly coupled CeO2–Mo2C nanocomposites anchored by reduced graphene oxide [10.1039/D2DT02131E]. Dalton Transactions, 51(39), 15089–15093. https://doi.org/10.1039/D2DT02131E
  13. Guo, J., & Liu, W. (2022). Stable and High-Performance Organ0ic Aqueous Dual-Ion Batteries with Polyaniline/CNTs Cathode. Journal of Physics: Conference Series, 2276(1), 012028. https://doi.org/10.1088/1742-6596/2276/1/012028
  14. He, J., Wang, X., Wang, Z., Jiang, R., Wang, K., Zhang, R., Wang, H., Geng, B., Gao, H., Song, S., & Zhang, H. (2025). Investigation on Cu promotion effect on Ce-based solid solution-anchored Rh single atoms for three-way catalysis. Chinese Chemical Letters, 36(2), 109640. https://doi.org/https://doi.org/10.1016/j.cclet.2024.109640
  15. Jiang, D., Zhang, J., Liu, T., Li, W., Wan, Z., Han, T., Che, C., & Cheng, L. (2022). A Modified Johnson-Cook Model and Microstructure Evolution of As-Extruded AA 2055 Alloy during Isothermal Compression. Metals, 12(11), Article 1787. https://doi.org/10.3390/met12111787
  16. Li, X.-L., Ma, Z., Wu, J., Zhou, Q., & Tang, J. (2022). Enhancing magnetic relaxation through subcomponent self-assembly from a Dy2 to Dy4 grid [10.1039/D2DT02996K]. Dalton Transactions, 51(46), 17579–17586. https://doi.org/10.1039/D2DT02996K
  17. Li, X.-L., Zhao, L., Wu, J., Shi, W., Struch, N., Lützen, A., Powell, A. K., Cheng, P., & Tang, J. (2022). Subcomponent self-assembly of circular helical Dy6(L)6 and bipyramid Dy12(L)8 architectures directed via second-order template effects [10.1039/D2SC03156F]. Chemical Science, 13(34), 10048–10056. https://doi.org/10.1039/D2SC03156F
  18. Li, Y., Wang, K., Wang, Z., Wang, X., Chu, X., Zhang, R., Song, S., Zhang, H., & Wang, X. (2025). Ultra-Fast Synthesis of Composite Oxide-Supported Transition Metal Alloy as an Advanced Catalyst for Ammonia Decomposition. Advanced Energy Materials, 15(22), 2405296. https://doi.org/https://doi.org/10.1002/aenm.202405296
  19. Li, Z.-W., Liang, Y.-L., Wang, J., Yan, J.-M., Liu, J.-W., Huang, G., Liu, T., & Zhang, X.-B. (2024). An In Situ Gelled Polymer Electrolyte to Stabilize Lithium–Air Batteries. Advanced Energy Materials, 14(19), 2304463. https://doi.org/https://doi.org/10.1002/aenm.202304463
  20. Lingling Li, Y. L., Shuyan Song, Hongjie Zhang. (2022). Synthesis of Cu Single Atom with Adjustable Coordination Environment and Its Catalytic Hydrogenation Performance. Acta Chimica Sinica, 80(1), 16–21. https://doi.org/10.6023/a21100467
  21. Liu, S., Gil, Y., Zhao, C., Wu, J., Zhu, Z., Li, X., Aravena, D., & Tang, J. (2022). A conjugated Schiff-base macrocycle weakens the transverse crystal field of air-stable dysprosium single-molecule magnets. Inorganic Chemistry Frontiers, 9(19), 4982–4989. https://doi.org/10.1039/d2qi01565j
  22. Liu, X., Zhao, C., Wu, J., Zhu, Z., & Tang, J. (2022). Air-stable chiral double-decker Dy(iii) macrocycles with fluoride ion as the sole axial ligand [10.1039/D2DT02902B]. Dalton Transactions, 51(43), 16444–16447. https://doi.org/10.1039/D2DT02902B
  23. Shi, M.-m., Bao, D., Yan, J.-m., Zhong, H.-x., & Zhang, X.-b. (2024). Coordination and Architecture Regulation of Electrocatalysts for Sustainable Hydrogen Energy Conversion. Accounts of Materials Research, 5(2), 160–172. https://doi.org/10.1021/accountsmr.3c00197
  24. Shi, Y., Wang, X., Zhang, L., Chu, X., Liu, L., Geng, B., Jiang, R., Zhang, S., Song, S., & Zhang, H. (2025). Oxygen-Doped γ-Mo2N as High-Performance Catalyst for Ammonia Decomposition. Small, 21(12), 2410803. https://doi.org/https://doi.org/10.1002/smll.202410803
  25. Wang, H., Han, X., Zhang, L., Wang, K., Zhang, R., Wang, X., Song, S., & Zhang, H. (2023). Integrating ceria with cobalt sulfide as high-performance electrocatalysts for overall water splitting. Fundamental Research, 3(3), 356–361. https://doi.org/https://doi.org/10.1016/j.fmre.2021.12.008
  26. Wang, J., Chu, J.-W., Li, Z.-W., Liang, Y.-L., Liu, T., Liu, J.-W., Huang, G., & Zhang, X.-B. (2024). Developing a Hydrophobic Mixed Conductive Interlayer for High-Performance Solid-State Lithium Batteries. Batteries & Supercaps, 7(2), e202300504. https://doi.org/https://doi.org/10.1002/batt.202300504
  27. Wang, J., Jiang, L., Pang, R., Zhang, S., Li, D., Li, K., Li, C., & Zhang, H. (2022). Cr3+-doped borate phosphors for broadband near-infrared LED applications [10.1039/D2QI00168C]. Inorganic Chemistry Frontiers, 9(10), 2240–2251. https://doi.org/10.1039/D2QI00168C
  28. Wang, X., Wu, X., Zhao, M., Zhang, R., Wang, Z., Li, Y., Zhang, L., Wang, X., Song, S., & Zhang, H. (2024). High-efficiency Ce-modified ZSM-5 nanosheets for waste plastic upgrading. Nano Research, 17(6), 5645–5650. https://doi.org/10.1007/s12274-024-6475-y
  29. Wang, X., Zhang, R., Wu, X., Li, Y., Wang, Z., Zhao, M., Song, S., Zhang, H., & Wang, X. (2025). Enhancing Waste Plastic Hydrogenolysis on Ru/CeO2 Through Concurrent Incorporation of Fe Single Atoms and FeOx Nanoclusters. Angewandte Chemie International Edition, 64(27), e202506035. https://doi.org/https://doi.org/10.1002/anie.202506035
  30. Wang, Y., Wang, H., Yang, Y., Hao, Z., Deng, R., Dong, Q., Liu, Q., You, H., & Song, S. (2024). Fenton-Inactive Cd Enables Highly Selective O2-Derived Domino Reaction. Advanced Science, 11(47), 2407051. https://doi.org/https://doi.org/10.1002/advs.202407051
  31. Wu, J., Wang, G. L., Zhu, Z., Zhao, C., Li, X. L., Zhang, Y. Q., & Tang, J. (2022). Terminal-fluoride-coordinated air-stable chiral dysprosium single-molecule magnets. Chem Commun (Camb), 58(55), 7638–7641. https://doi.org/10.1039/d2cc02570a
  32. Wu, J., Yang, Q., Li, X.-L., Zhu, Z., Zhao, C., Liu, T., & Tang, J. (2025). An AIE-Active Fe(II) Complex Exhibiting Synergistic Spin-Crossover and Luminescent Properties. Crystal Growth & Design, 25(4), 1276–1281. https://doi.org/10.1021/acs.cgd.4c01726
  33. Wu, J., Yang, Q., Lu, J., Li, X.-L., Zhu, Z., Zhao, C., Liu, T., & Tang, J. (2025). Synergetic Spin-Crossover and Luminescence in a Fe(II) Complex with Aggregation-Induced Emission and Twisted Intramolecular Charge Transfer. Precision Chemistry. https://doi.org/10.1021/prechem.5c00044
  34. Wu, J., Zhao, C., Zhu, Z., Li, X.-L., Ashebr, T. G., & Tang, J. (2022). Aggregation-Induced Emission and Single-Molecule Magnet Behavior of TPE-Based Ln(III) Complexes. Chemistry – An Asian Journal, 17(23), e202200913. https://doi.org/https://doi.org/10.1002/asia.202200913
  35. Xia, X., Ge, L., Rogachev, A., Wang, Z., & Wang, H. (2025). Recent Advances in Antioxidant Cerium-Based Nanozymes: Catalytic Mechanisms and Bioanalysis/Biomedical Applications. Chinese Journal of Analytical Chemistry, 100640. https://doi.org/https://doi.org/10.1016/j.cjac.2025.100640
  36. Xu, J., Li, L., Pan, J., Cui, W., Liang, X., Yu, Y., Liu, B., Wang, X., Song, S., & Zhang, H. (2022). Boosting the Catalytic Performance of CuOx in CO2 Hydrogenation by Incorporating CeO2 Promoters. Advanced Sustainable Systems, 6(4), 2100439. https://doi.org/https://doi.org/10.1002/adsu.202100439
  37. Xu, J., Wang, K., Zhao, M., Zhang, R., Cui, W., Liu, L., Wang, X., Wang, J., Song, S., & Zhang, H. (2025). Boosting CO2 Hydrogenation by Synergistic Incorporation of Pure Silica Silicalite-1 Zeolite and CeO2 into Cu Catalysts. Angewandte Chemie International Edition, 64(15), e202423438. https://doi.org/https://doi.org/10.1002/anie.202423438
  38. Yang, D., Du, J., Chen, K., Zhang, H., Huang, G., Liu, T., Zhang, X., & Zhang, H. (2024). All-inorganic nitrate electrolyte for high-performance lithium oxygen battery. Nano Research, 17(5), 4163–4170. https://doi.org/10.1007/s12274-023-6353-z
  39. Yang, Q., Li, X.-L., Ashebr, T. G., Zhao, L., & Tang, J. (2022). Self-Assembly of Lanthanide Crescent-Like and Macrocyclic Clusters from Versatile o-Vanillin-Based Ligands. Chemistry – An Asian Journal, 17(16), e202200496. https://doi.org/https://doi.org/10.1002/asia.202200496
  40. Yang, Q., Wang, G.-L., Zhang, Y.-Q., & Tang, J. (2022). Self-assembly of fish-bone and grid-like CoII-based single-molecule magnets using dihydrazone ligands with NNN and NNO pockets [10.1039/D2DT02451A]. Dalton Transactions, 51(36), 13928–13937. https://doi.org/10.1039/D2DT02451A
  41. Zhang, C., Liang, L., Zhao, S., Wu, Z., Wang, S., Yin, D., Wang, Q., Wang, L., Wang, C., & Cheng, Y. (2023). Dehydrogenation behavior and mechanism of LiAlH4 adding nano-CeO2 with different morphologies. Nano Research, 16(7), 9426–9434. https://doi.org/10.1007/s12274-023-5636-8
  42. Zhang, D., Li, B., Che, C., Liu, B., Cheng, P., Zhao, Y., Zhang, J., & Cheng, L. (2023). Mechanical Heterogeneity of Heat-Resistant EV31A Magnesium Alloy with Large Size Processed by Direct-Chill Casting. Metals and Materials International, 29(10), 2826–2837. https://doi.org/10.1007/s12540-023-01427-5
  43. Zhang, D., Li, B., Zhang, D., Che, C., Liu, B., Li, C., Niu, T., Gong, X., Du, C., & Cheng, L. (2023). Enhanced heat resistance of a sand-cast Mg-Sm-Zn-Zr alloy due to the co-precipitation of basal and prismatic phases by minor Nd addition. Materials Science and Engineering: A, 870, 144849. https://doi.org/https://doi.org/10.1016/j.msea.2023.144849
  44. Zhang, D., Li, B., Zhao, Y., Zhang, J., Zhang, D., Che, C., Cheng, L., Zhang, Y., & Xu, T. (2022). Mechanical properties and microstructure of a high-quality Mg-Nd alloy ingot with large size manufactured by direct chill casting. Materials Characterization, 193, 112336. https://doi.org/https://doi.org/10.1016/j.matchar.2022.112336
  45. Zhang, N., Du, J., Zhou, N., Wang, D., Bao, D., Zhong, H., & Zhang, X. (2023). High-valence metal-doped amorphous IrOx as active and stable electrocatalyst for acidic oxygen evolution reaction. Chinese Journal of Catalysis, 53, 134–142. https://doi.org/https://doi.org/10.1016/S1872-2067(23)64517-6
  46. Zhang, S., Zhang, L., Liu, L., Wang, X., Pan, J., Pan, X., Yu, H., & Song, S. (2022). NiCo-LDH@MnO2 nanocages as advanced catalysts for efficient formaldehyde elimination. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 650, 129619. https://doi.org/https://doi.org/10.1016/j.colsurfa.2022.129619
  47. Zhao, C., Zhu, Z., Li, X.-L., & Tang, J. (2022). Air-stable chiral mono- and dinuclear dysprosium single-molecule magnets: steric hindrance of hexaazamacrocycles [10.1039/D2QI00754A]. Inorganic Chemistry Frontiers, 9(16), 4049–4055. https://doi.org/10.1039/D2QI00754A
  48. Zhao, C., Zhu, Z., Wu, J., Yang, Q., Gebretsadik Ashebr, T., Li, X.-L., & Tang, J. (2023). Chiral All-Nitrogen-Coordinated Dysprosium Single-Molecule Magnets. Chemistry – A European Journal, 29(5), e202202896. https://doi.org/https://doi.org/10.1002/chem.202202896
  49. Zhou, Q., Zhu, Z., Ying, X., Li, X.-L., & Tang, J. (2025). A Photochromic Dysprosium Compound Supported by β-Diketone Dithienylethene Ligand. Chemistry – A European Journal, 31(25), e202500527. https://doi.org/https://doi.org/10.1002/chem.202500527
  50. Zhou, X., Han, K., Li, K., Pan, J., Wang, X., Shi, W., Song, S., & Zhang, H. (2022). Dual-Site Single-Atom Catalysts with High Performance for Three-Way Catalysis. Advanced Materials, 34(20), 2201859. https://doi.org/https://doi.org/10.1002/adma.202201859
  51. Zhu, Z., Jin, G.-Q., Wu, J., Ying, X., Zhao, C., Zhang, J.-L., & Tang, J. (2022). Highly symmetric Ln(iii) boron-containing macrocycles as bright fluorophores for living cell imaging [10.1039/D2QI01476A]. Inorganic Chemistry Frontiers, 9(19), 5048–5054. https://doi.org/10.1039/D2QI01476A
  52. Zhu, Z., Liu, S., Zhao, C., Li, X.-L., Mansikkamäki, A., & Tang, J. (2022). Oligopyrrolic Cu(ii)-based tetragonal cage: synthesis, structure, and spectral and magnetic properties [10.1039/D2DT02491H]. Dalton Transactions, 51(36), 13596–13600. https://doi.org/10.1039/D2DT02491H
  53. Zhu, Z., & Tang, J. (2022a). Lanthanide single-molecule magnets with high anisotropy barrier: where to from here? National Science Review, 9(12). https://doi.org/10.1093/nsr/nwac194
  54. Zhu, Z., & Tang, J. (2022b). Metal–metal bond in lanthanide single-molecule magnets [10.1039/D2CS00516F]. Chemical Society Reviews, 51(23), 9469–9481. https://doi.org/10.1039/D2CS00516F
  55. Zhu, Z., Ying, X., Zhao, C., Zhang, Y.-Q., & Tang, J. (2022). A new breakthrough in low-coordinate Dy(iii) single-molecule magnets [10.1039/D2QI01940J]. Inorganic Chemistry Frontiers, 9(23), 6061–6066. https://doi.org/10.1039/D2QI01940J
  56. 舒帆, 车朝杰, & 程丽任. (2023). 铸态Mg−2Sc−2Y−0.5Zr合金热压缩行为及热加工图. 精密成形工程, 15(3), 1–8. https://doi.org/10.3969/j.issn.1674-6457.2023.03.001
  57. 臧兰兰, 郑嫄, 阎帅, 王天宇, 李文斌, 车朝杰, & 程丽任. (2023). 挤压态Mg-9Al-Zn-0.5RE-Ca-Si合金微观组织和力学性能. 精密成形工程, 15(5), 26–35. https://doi.org/10.3969/j.issn.1674-6457.2023.05.004